EB1 Accelerates Two Conformational Transitions Important for Microtubule Maturation and Dynamics
نویسندگان
چکیده
BACKGROUND The dynamic properties of microtubules depend on complex nanoscale structural rearrangements in their end regions. Members of the EB1 and XMAP215 protein families interact autonomously with microtubule ends. EB1 recruits several other proteins to growing microtubule ends and has seemingly antagonistic effects on microtubule dynamics: it induces catastrophes, and it increases growth velocity, as does the polymerase XMAP215. RESULTS Using a combination of in vitro reconstitution, time-lapse fluorescence microscopy, and subpixel-precision image analysis and convolved model fitting, we have studied the effects of EB1 on conformational transitions in growing microtubule ends and on the time course of catastrophes. EB1 density distributions at growing microtubule ends reveal two consecutive conformational transitions in the microtubule end region, which have growth-velocity-independent kinetics. EB1 binds to the microtubule after the first and before the second conformational transition has occurred, positioning it several tens of nanometers behind XMAP215, which binds to the extreme microtubule end. EB1 binding accelerates conformational maturation in the microtubule, most likely by promoting lateral protofilament interactions and by accelerating reactions of the guanosine triphosphate (GTP) hydrolysis cycle. The microtubule maturation time is directly linked to the duration of a growth pause just before microtubule depolymerization, indicating an important role of the maturation time for the control of dynamic instability. CONCLUSIONS These activities establish EB1 as a microtubule maturation factor and provide a mechanistic explanation for its effects on microtubule growth and catastrophe frequency, which cause microtubules to be more dynamic.
منابع مشابه
Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking
Visualization of specific molecules and their interactions in real time and space is essential to delineate how cellular dynamics and the signaling circuit are orchestrated. Spatial regulation of conformational dynamics and structural plasticity of protein interactions is required to rewire signaling circuitry in response to extracellular cues. We introduce a method for optically imaging intrac...
متن کاملCritical role for the EB1 and APC interaction in the regulation of microtubule polymerization
Human EB1 was originally cloned as a protein that interacts with the COOH terminus of adenomatous polyposis coli (APC). Interestingly, this interaction is often disrupted in colon cancer, due to mutations in APC. EB1 also interacts with the plus-ends of microtubules and targets APC to microtubule tips. Since APC is detected on the kinetochores of chromosomes, it has been hypothesized that the E...
متن کاملEB 1 promotes microtubule dynamics and regulates tubulin sheet closure in vitro
1 EB1 promotes microtubule dynamics and regulates tubulin sheet closure in vitro. End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles 1, 2. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells 3-6 and purified systems 7-13 , the mole...
متن کاملEB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules.
EB1 targets to polymerizing microtubule ends, where it is favorably positioned to regulate microtubule polymerization and confer molecular recognition of the microtubule end. In this study, we focus on two aspects of the EB1-microtubule interaction: regulation of microtubule dynamics by EB1 and the mechanism of EB1 association with microtubules. Immunodepletion of EB1 from cytostatic factor-arr...
متن کاملThe microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization.
Several microtubule-binding proteins including EB1, dynactin, APC, and CLIP-170 localize to the plus-ends of growing microtubules. Although these proteins can bind to microtubules independently, evidence for interactions among them has led to the hypothesis of a plus-end complex. Here we clarify the interaction between EB1 and dynactin and show that EB1 binds directly to the N-terminus of the p...
متن کامل